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The present paper deals with several characterization theorems for best
approximation in normed vector spaces by nonlinear elements. Guided by the
outstanding results of Singer in the linear theory, some results of Laurent and
Brosowski are generalized so as to obtain a unified approach for the linear and
nonlinear approximation theory. Characterization theorems are formulated
which assert the existence of particular linear functionals. We give geometrical
interpretations to all our characterization theorems; also duality relations are
given.

1. INTRODUCTION

Recently Singer presented a complete unified theory of approximation in
a general normed linear space by elements of a linear subspace [10]. These
results provide a modern theory of best approximation, which uses in a
systematic manner the methods of functional analysis, general topology and
geometry. Linear functionals play a central role in Singer’s approach and
this is mainly due to the duality relations between a given extremal problem
in a linear space and the corresponding extremal problem in the dual space.
Once the problem is embedded in this general context, proofs often become
straightforward.

Brosowski introduced in [3] generalizations of the Kolmogoroff conditions,
for nonlinear approximations in general normed linear spaces. To extend
completely Singer’s unified theory, a main theorem was still missing, asserting
the existence of linear functionals with certain properties. In this contribution
such a necessary and sufficient a condition is given, which shows the exis-
tence of some particular linear functionals (Lemma 7.). The necessary condi-
tion reduces in a particular case to the condition given by Laurent in [7], and
earlier by Brosowoski in [2, p. 47] (restricted to a Chebyshev norm). How-
ever our deductions are independent of these results.
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We give also a refined version of the above characterization, based on
Singer’s extension of Caratheodory’s theorem. Effort is made to present
results in a form similar to the unified approach of Singer. Consequently,
differences between the linear and the nonlinear theory become apparent.

In Section 2 the general approximation problem is stated together with a
list of some relevant concepts used throughout this paper. Most of them are
standard [6]. In Section 3, the extensions of the Kolmogoroff conditions are
reformulated and geometrically interpreted. They consist of a local necessary
and a global sufficient condition and are called here characterizations of
type I. Section 4 is devoted to a necessary and sufficient condition concerning
the existence of particular linear functionals. A complete characterization
theorem is obtained and called of type II (Theorem 8). If, in addition, a
Gateaux (resp. Frechet) derivative exists for the approximating functions,
this characterization theorem can be reformulated (Theorem 11).
Geometrical interpretations of these characterization theorems are obtained.
In Section 5 a refinement is given of the characterization theorems of type I1
which is, too, geometrically interpreted. Finally duality relations are obtained
in Section 6.

2. STATEMENT OF THE PROBLEM. NOTATIONS

(2a) The problem of best approximation consists in finding, for a given
function f€ E (a normed linear space), an approximating function g, belong-
ing to a given nonvoid subset G of E, such that:

I/ — gl = inf £ — gl

The set of all best approximating functions g, € G for f will be denoted by
Le(f):
Lo(f) = (g€ GlIlf — &l = inf|lf — g}

To exclude trivial cases we suppose G is not dense in E and fe E\adh G.

(2b) It is convenient for nonlinear approximation problems to define
a particular subset of the normed linear space E : [3, p. 147; 8, p. 2].

An element 4 € E will be called an adherent displacement for G starting
from g, € G if for every neighborhood of / (denoted N,) and for every € >0
there exists an 7 €] 0, € [and an &’ € N,, such that g, + 7 - 2 € G.

The set of all adherent displacements will be denoted by C[ g, , G1; it
is a nonvoid closed cone with vertex at the origin. (k€ C = M e C, A > 0).
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By [8, p. 10] : if G is a convex subset of E and g, € adh G, then the cone
of adherent displacements C[ g, , (] is also convex and is given by

Clg, G] = adh

U Madh G — gO)E. )

A>0

In general, the following inclusions hold:

Clg,, G] C adh

U Madh G — g(,)g Dadh G — g, .

A>0

In the particular case in which G is a linear subspace of E, the following
identity is valid:

Clg,,Gl=2adhG —g,.

(2¢) Linear functionals play a central role in characterizing the best
approximating function. We mention in this connection several concepts
and properties.

Let E* denote the conjugate space of the normed linear space E, namely,
the space of all continuous linear functionals on E, endowed with the classical
vector operations and the norm

| LIl =sup [L(f)l, LeE%
feBg

where By = {f € E| || f|| < 1} denotes the unit ball in E. The space E* will
be provided with the weak* topology o(E*, E) (simple convergence topology
on E*). The unit ball in E*, denoted (Bg.), is known to be compact for
o(E*, E) (theorem of Alaoglu). A set I in a topological linear space is called
an extremal subset of a closed convex set A4, if M is a nonvoid closed convex
subset of 4, and if the relations x, y € 4 and Ax 4 (1 — ) y e M, with
Ae 0, 1, imply x, y € M. An extremal subset of 4 consisting of a single
point is called an extremal point of A. The set of all extremal points of A4 is
denoted by E(4). The set

My ={LeSe| LLS) =S}, fe E0}

(where Sz, ={L e E*|| L| =1} is the unit sphere in E¥*) is a nonvoid
extremal subset of the ball B;. endowed with o(E*, E) [10, p. 59], and is hence
o(E*, E)-closed. Moreover, since Bg. is compact in o(E*, E), so is M, . By
[6, p. 78], €(M,) is nonvoid, and is E(Bg.) N M, [10, p. 58].

The annihilator in E* of a nonvoid subset 4 of the linear space E is

A ={LeE*| L(»)=0, YyeACEY
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the annihilator in £ of a nonvoid subset B of the linear space E* will be
denoted °B. The number || /||, where f€ E and I" C E* is defined as
I/l = . sup | L(f)I.

€NBpx
The restriction of a linear Tunctional L € E* to *I” C E will be denoted £ oy

(2d) In order to state clearly the geometrical interpretation of the
characterizations, we need to introduce some geometrical concepts.

B(f,r)y={geE|lg—fI<r}

is a ball in the normed linear space F, and H[L, «] = {g€ E| L(g) = o} isa
hyperplane in E. The distance of an element f< E from the hyperplane
HiL, «]} is given by

p(f, HIL, o) = | L( f) — a |/ L]

The set 4 C E supports the ball B(f, r) if and only if p(4, B(f, r))= 0 and
the set [4 N int. B(f, r)] is void. By [10, p. 25] this is equivalent with
p(f, A) = r. A real hyperplane H[Re L, «] is called an extremal hyperplane if
L e §(Bg.). Moreover, in a normed linear space E, a real hyperplane
HIRe L, o] is said to separate the subset A C E from the subset BCE, if 4 is
contained in one of the real half-spaces {k = £ | Re L(k) = «} or

{ke E|Re L(k) < o,

and B in the other.
A hyperplave H is said to pass through the set M if M C H. The following
property will prove to be very useful.

Property A. 110, p. 25)

Let E be a normed linear space, f€ E, r > 0. Then for any L € E* with
L € Sg. the hyperplane H[L, L( f) — r] supports the ball B(f, r), and for any
support hyperplane H of the ball B(f, r) there exists a unique L € E* with
L € Sg. such that H = H[L, L( f) — r].

The approximation problem can be reformulated in this geometrical
context, and consists in finding a point g, € G such that its distance to f
(denoted off, 2,)) equals the distance of f to G,

p(f, G) = inf p(f; 2.

All points g, satisfying this requirement form the set £5( f). In linear approxi-
mation theory (G a linear subspace of E), g, € 8;( f) is equivalent to the
existence of a linear functional L eimf_ N G° defining a hyperplane
H[L, 0], which passes through G and supports the ball B(f,|lf — g ID.
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Consequently, the linear space G and the hyperplance H are at equal distance

to f.
In the following we will give the geometrical interpretation of the extension
of these results.

3. CHARACTERIZATION THEOREMS OF TyPE I

(3a) Extended Kolmogoroff Conditions

The following Lemma 1 and Lemma 2 are known extensions of the
Kolmogoroff condition [3]. They are presented here in a form suitable for
geometrical interpretation; see Singer {10, 59-62].

LemMa 1. [3,p. 148]. Let E be a normed linear space and G a subset of E,
with fe E\adh G and gy € G. If g, € 8c( f), then for every he Clg,, G), there
exists a linear functional L* € E* such that:

() L*»eC(Bg), ¥)
(i) LMf —go) =f— &, ©))
(iii) Re L*h) <0. )

LemMmA 2. [3, p. 141]. Let E be a normed linear space and G a subset of E,
with fe E\adh G and g, € G. If for every g € G there exists a linear functional
L9 e E* such that:

() L7 E(Bg), 3

i) LUf —g) =IIf— gl ©)

(i) Re L*(g — gy <0, (M
then g, € L( ).

(i)—(iii) of Lemma 1 are known as the Local Kolmogoroff condition on G.
Their necessity is presented in [3] and [5, p. 370] as : if g, € 84( f), then for

every he Clg,, Gl,
LEGI(I’lmlt?_go) Re L(h) < 0. ®)

Similarly (i)—(iii) of Lemma 2 are known as the Global Kolmogoroff condition
on G. Their sufficiency can also be stated in the following form, according to
[3] and [5, p. 370]: if for every element g € G,

Le&rglﬂ;g“%) Re L(g — go) <0, ®

then g, € L4( f).
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A 0a=L=(001)
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Fic. 1. The Local and Global Kolmogoroff conditions in R®,

The Fig. 1 will be helpful in interpreting the preceding Lemmas. For the
problem of approximating f< E by elements of G C E where the normed
space E = R®, we obviously have gy £,( f). By Lemma 1 there exists a
unique linear functional L satisfying L € €(Bg.) N M;_, , where L(h) = k,
for Vhe R®, h = (hy , hy , hy). The local Kolmogoroff condition (2)-(4) or (8)
is satisfied since Re L(h) << O for Vae Clg,, G]. The Global Kolmogoroff
condition on G is also satisfied for the unique L defined above. Since

Re L(g') <O0forVg'e G — g,,

by (5)-(7) or (9), go € 8c( f). By Fig. 1 it is easily verified that the Local
Kolmogoroff condition is only necessary. Remembering that in general the
subset G of E is only partially contained in C[g, , G], we see that even if (8)
is satisfied for alil elements # € C[g,, G], there may exist an element ge G
belonging to intB(f, [ f— go!)), so that g, ¢ 2( f). Similarly, the Global
Kolmogoroff condition is only sufficient. Indeed if g, 24( f), there may
exist some g € G for which (9) is not satisfied.

The condition (2)—~(4) of Lemma 1, as well as (5)~(7) of Lemma 2 can be
expressed in equivalent forms. In particular, for the condition of Lemma 2
we have the following equivalent variants:
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COROLLARY 3. Let E be a normed linear space and G a subset of E, with
feE\adh G and gy G. If for every g€ G there exists a linear functional
L9 € E* such that one of the following equivalent conditions is satisfied:

@ @ L6,

(i) Re L(g, — 8) = 0. (10)
(®) (5), (10) and Re L*(f — go) = |l.f — gl
© OO

(i) Re [L(g, — &) - L(f — &)1 = 0,
Gi) | Lf — gl = IIf — & l;
then g, € L ).
Proof. Obviously (a) — (b). We have (b) — (a) since

| f—goll = Re LA(f — go) < LAf — go)l <IIf — &l

and consequently L(f — g,) is real and > 0. Obviously we also have
(a) — (c). To prove (c) — (a), we define the linear functional

L9 = [sign LY(f — g,)] * L?, where sign a = &/] o |.
Consequently £9 € €(Bg.) and

Re £9(gy — g) = Re[L%(gy — &) - L(f — g0)] = 0

2Uf — go) = | Lf — g = Il f — gl
Q.E.D.

Remark. In the particular case in which G is a linear subspace of E, the
facts Clgy, G] = adh G — g, and g — g, € G for Vg € G, reduce Lemma 1
and Lemma 2, respectively, to the necessary and sufficient parts of the
Kolmogoroff condition

Le@%‘tﬂgo) Re L(g) < 0; VgeG

for g, to satisfy g, € €4( /) [10, p. 62]. The condition can also be stated as

LEGI?Sman_,O) Re I(g) = 0; Vg e G.

(3b) Properties (B)

(B1) If G is a nonvoid subset of E, the following statements are equiv-
alent [5, p. 371, 383]:
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(i) The Global Kolmogoroff condition on G is necessary,
(ii) For every fe E, all elements g e G satisfying g € Q;( f) satisfy
also ge 8:(g + Af —g) for all A > 1.
(Fig. 1: go € L6(go T A(f — 80)), YA = 1).
(B2) If the subset G of F satisfies G C C[g, , G] + & , then:

(i) The Local Kolmogoroff condition on G is sufficient,
(ii) The Global Kolmogoroff condition on G is necessary.

Proof. 1If g4 84( f), then (8) is valid for Vh € C[ g, , G] and consequently
(8) is valid for Vh € G — g, which means that (9) is valid for Vg€ G. Q.E.D.

{(B3) If G is convex, then by (1), Clg,, G12> G — g, and consequently
(i) and (i1} of (B2) hold.

(B4) If g, € 24( f) then:

(i) Oe QC[QO,G] (f — &o),
(i) 8o € Lctg,c14q, ()

Proof. By the Local Kolomogoroff condition, (8) is satisfied for
Yhe Clg, , G}, which by the Global Kolmogoroff condition on Clg,, G]
proves 0 € £cy c)(f — g0 Q.E.D.

(B5) The following statements are equivalent

(D 0e Lep.allf — 2o
(ii) eé?g}z“ , Re L(h) <0, Vhe Clg,, G].

L a4

Proof. 1f 0 € 8¢, 61(f — &), then by the Local Kolmogoroff condition
on C[g,,G] we have (8) for Vhe C[0, C[g,, G]]. We have Clg,, G] =
C[0, Clg, , G]), since, applying the general inclusion for the cone of adherent
displacements, we obtain C[0, C[g,, G1} C Clg,, C]. Conversely, applying
the definition of the cone of adherent displacements, it becomes obvious that
yeClg,, G] implies ye C[0, C[g,, Gl Consequently we have (8) for
VheClg,, Gl

If (ii) is satisfied, by the global Kolmogoroff sufficient condition we obtain
immediately (i). Consequently, the Global Kolmogoroff condition on
Cl g, , G] is necessary and sufficient. Q.E.D.

(3¢c) Geometrical Interpretation

We deduce first a theorem expressing in geometrical terms, the requirements
of the Kolmogoroff conditions on G.
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THEOREM 4. Let E be a normed linear space, G a subset of E, f€ E\adh G
and gy € G. Let L € Be. and let h be a given element of E. The following state-
ments are equivalent.

(a) The linear functional L € E* satisfies
() LeC(Bg),
(i) Re L(h) <0,
(i) L —g) =[S — &l -
(b) The real support hyperplane H[Re L,Re L( f) — || f — g, |l] of the
ball B(f,|| f — g.l) is extremal, passes through g, and separates {h -+ g,} from

B(f,1Lf — & D

Proof. The real support hyperplane is extremal if and only if L € €(Bg.).
If L(f — g4 = lIf — gaoll, it follows immediately that

H[Re L, Re L( /) — || f — &Il
passes through g, . Conversely, if we have
If— gl = Re L(f — go) < | L(f — gl <If—&oll,
then L(f — go) is real and > 0, and L(f — go) = ||f — g,/ - For

VyeB(f, I f — gl

If— &l =1L(f—y) =Re L(f —¥)

and consequently for H to separate {h + g,} from B(f,||f— gol) it is
necessary and sufficient that

Re L(h + go) S Re L(f)— I f — &l -

Assuming that we have L(f — go) = ||f — go |l , or that H passes through g, ,
we obtain Re L(h) < O for the element /4 of E. Q.E.D.

we have

The geometrical interpretation of the Local Kolmogoroff condition is now
easily obtained as

THEOREM 5. Let E be a normed linear space, G a subset of E, f< E\adh G
and Cl g, , G] a nonvoid subset of E. If g, € 8¢( f), then for every h € Cl g, , G]
there exists a real extremal hyperplane H* which supports the ball

B(fa ”f_ 8o “)a
passes through g, and separates {h + g} from B(f, || f — g ).

If, in addition, the Local Kolmogoroff condition is also sufficient, then the
preceding statement is equivalent with g, € £4( f).
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8(f,If-go

o =l Clg..01+9,

Fic. 2. Geometrical interpretation of the Local Kolmogoroff condition.

This geometrical interpretation of the Local Kolmogoroff condition is
shown in Fig, 2.

Analogously, the Global Kolmogoroff condition can be interpreted as
follows:

THEOREM 6. Let E be a normed linear space, G a subset of E and
fe E\adh G. If for every g € G, there exists a real extremal hyperplane H?
which supports the ball B(f, | f — g, |), passes through g, and separates g from

B(f,lf — 8D, then g, € L(f).

If, in addition, the Global Kolmogoroff condition is necessary, then the
preceding condition is equivalent with g, € £,(f).

The geometrical interpretation of the Global Kolmogoroff condition is
represented in Fig. 3.

B(f 11-g}

Fig. 3. Geometrical interpretation of the Global Kolmogoroff condition.
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4. CHARACTERIZATION THEOREMS OF TYPE II

(42) Based on the Hahn-Banach extension theorem, the existence of
linear functionals with particular properties can be proved. They play a crucial
role in nonlinear approximation theory, as in the linear case [10, p. 18]. We
deduce first a general necessary and also a sufficient condition for the
existence of these functionals.

LemMA 7. Let E be a normed linear space and G a subset of E, f € E\adh G
and g, € G.

(@) If@) go< Le(f),
(i) M is a nonvoid linear subspace in E (not necessarily closed) such
that 0 € @y(f — go), then M,_, N M° is a nonvoid subset of E*.

(b) If (i) the Local Kolmogoroff condition on G is sufficient
(i) theset My, N C[ gy, Glisa nonvoid subset of E*, then g, € 2:(f).

Proof. (a) Since f€ E\adh G and g, € £,(f), we have || f — g, || > 0. This
together with 0€ &u(f — g,) imply f— g, € E\adh M. Applying Singer’s
theorem [10, Theorem 1.1, p. 18] to the linear approximation of (f — g,) by
elements of the linear subspace M of E, we have that 0 € 8u(f — g,), 0e M,
is equivalent with the existence of a linear functional L in E* such that
I Ll =1, L(h) =0forVhe Mand L(f — go) =l — & -

(b) If the linear functional L € £* satisfies L € M,_, N C'[g,, G], we
have

1f—goll = L(f — & — k) <|If — g — k| for Vk e Clg, , G]

and consequently 0 € £¢(, 61 (f — go)- By the property (B5) we obtain (8) for
all h e C[ g, , G]. Finally by the fact that the Local Kolmogoroff condition on
G is sufficient, we have g, € £;(f). Q.E.D.

Remarks (R).

(R1) In some particular approximation problems, Lemma 7(b) can be
reformulated. We obtain the following corollaries by the properties (B2) and
(B3).

CoroLLARY 7(c). Let E be a normed linear space, G a subset of E satis-
Sying GCClgy,Gl+ 8 ,8¢€G,feE\adhG. If M, , N C%g,C] is a
nonvoid subset of E*, then gy Lc(f).

CoroLLARY 7(d). Let E be a normed linear space, G a convex subset of E,
feE\adh G and gy G. If My, N C%g,, Gl is a nonvoid subset of E*, then
8o € Lo(f)-
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(R2) 1If Gisalinear subspace in E, then Lemma 7(a) and Corollary 7(d)
reduce to Singer’s Theorem 1.1 [10, p. 18] on the equivalence between
80 € £5(f) and the nonvoidness of (M;_, N G°).

Lemma 7(a) and Corollary 7(d) are respectively, represented in Fig. 4 and
Fig. 5 for the particular case £ = R®.

By Lemma 7 it becomes obvious that a characterization theorem of
type 11 will be obtained if the cone C[g,, G] could be replaced by a nonvoid
linear subspace of C[g,, G]. These requirements are very restricting and
consequently are not fulfilled in general: there is no guarantee for Clg, , G]
to contain a nonvoid linear subspace. In general, the cone Clg,, G] will
contain a line through the origin if with a given function # € C[ g, , G}, the
function (—A) is also contained in C[g, , G]. If the cone C[g, , G] with vertex
at the origin is convex (which is equivalent with Clg,, G] + C[g,, G]C
Clgy,Gland A - Clg,, G] C Clg,, G] for all A > 0), then the largest linear
subspace contained in the cone C[g, , G]is given by

Clgo, G1N (—Clg, G) (1, p. 47].

In the following we will formulate a characterization theorem, supposing
C[ g , G] contains at least a nonvoid linear subspace M,[ g, , G]. (i.e., a line
through the origin). In order to replace the cone of adherent displacements
Clgo, G] by M,[g,, G] we introduce a Local Kolmogoroff condition on G
versus M, [ g, , G): if g, € £4(f), then for every A c M,[ g, , G],

L8R Re L(h) < 0. (11

This condition is always necessary for g, € £(f).

Properties (C)

(C1) If the Local Kolmogoroff condition on G versus M,[g,, G] is
sufficient, then the Local Kolmogoroff condition on G is also sufficient.

Proof. 1If there exists an element 2 € Cl g, , GI\M,[ g, , G] such that (11) is
not satisfied, then the Local Kolmogoroff condition on G is contradicted.
QED

(C2) Let E be a normed linear space, G a subset of E, fe E\adh G,
g€ G, and M, g,, G] a nonvoid linear subspace of the cone C[g,, G]
(M.,[ g, , G]is not necessarily closed).

If go € £¢(f), then 0 € Ly 5,61 (f — 8o)> OF &0 € B [4,.61+44, (-

Proof. 1If we have g, € 8;(f), then the Local Kolmogoroff condition is
always necessary. Consequently, Vi € C[ g, , G],

LB, Re 1) <0
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Fic. 5. If im,_,nr\ C%g,, G] is nonvoid in E* and G convex then g,€ £4(f).
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and hence

LEG(%:EVO_()) Re L(h — 0) < 0, Vhe Mg, , G]

which by the Global Kolmogoroff condition is necessary and sufficient for
0eM,g,, G] to satisfy

O0e QMc[yn.G](f — &o)-
Q.E.D.

Remark. Since M,[g,, G] is a linear subspace, the Global Kolmogoroff
condition is always necessary and sufficient for 0 & 8y [, .1 f — go)

We obtain now a complete characterization theorem of type II involving
the existence of special linear functionals in E*,

THEOREM 8. Let E be a normed linear space and G a subset of E, let
feE\adh G and gy G. Let M| g,, G] be a nonvoid linear subspace of E
contained in the cone C[g,, G).

(@) If go€ Le(f), then M,_, N Mg, , G] is nonvoid.
(b) If the Local Kolmogoroff condition on G versus M, g,, G] is
sufficient, then gy € Le(f) if and only if M;_; "\ M*[ g, , G is nonvoid.

Proof. The necessity of the condition follows immediately from Property
(C2) and Lemma 7(a). We only need to prove sufficiency. If the linear
functional L € E* satisfies L € M;_, N M,*[ g, , G], then

If— &l = L(f — & — k) <I|f — g — k| forVk e C[g,, G]

and consequently: 0 € Ly [, 61 f — g

Since M,[ g, , G]is a linear subspace of E, we obtain (11) for VA e M,[ g,, G]
which is equivalent with g, € £;(f) since the Local Kolmogoroff condition
on G versus M,[ g, , G] is supposed to be sufficient. Q.E.D.

In the particular case in which G is a linear subspace of E, Theorem 8
reduces to Singer’s Theorem 1.1 [10, p. 18] with M,[ g, , G] = G. According
to Singer, Theorem 8 can be formulated in some equivalent forms.

CorROLLARY 9 [10, p. 19; Lemma 1.1]. Let E be a normed linear space,
G a subset of E, fe E\adh G and goc G. Let M be a linear subspace in E.
The following statements a, b, ¢, d, e and f

(@ LeM , NM.
® @O LeSepnM, (12)
(i) ReL(f — g =If—gll. (13)
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© () LeSe, (14)
(i) Re L(K) =0,VheM, 15)
(i) (13).

@ @ (12,

() |L(f — gl =IIf— &l
e O 12,

() |ReL(f —g)l =1llf—gl. (16)
) (14), (15) and (16).

(4b) Particular Linear Subspaces Contained in C[g, , G]

Using the general concept of differentiation [9, Chapter 3] we give explicit
examples of linear spaces M,[ g, , G] contained in the cone C[g, , G]. Suppose
G C E satisfies G = {g(a)| ac P} where P is an open subset in a normed
vector space €.

(4b)(1) Assume g to be Gateaux differentiable at an interior point a of P,
which means that there exists a linear operator 4 € 2[E, E] such that for any
beC:

hm()uwwwm—am—tAm—o 17

The unique linear operator 4 € [, E] for which (17) holds, will be denoted
by g¢'(@) and called the Gateaux derivative of g at a. Consider now the
linear subspace Gla] of E, defined as

Glal = {4b| A = gs'(a), b e €}.

Then Gla] C C[g(a), G] since for any given positive numbers § and ¢, as g is
Gateaux differentiable, there exists a £, > 0 such that ¢, < € and

_ gla+ 1h) — 2@
| 45 " | <s.

Taking n = ¢, , one obtains

. 8la + 1b) — g(a)
fo

gla) + 1 eGCE.

(4b)(2) We consider now a stronger form of differentiation. The
mapping g is Frechet differentiable at a point a € P if there is a linear operator
A € Q[E, E] such that

lim 57— 18(a + ) — @ — b ]| = 0.

640/14/3-2
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The linear operator U is denoted by g5'(a) and called the Frechet derivative
of g at a. Defining the linear subspace in E,

&la] = {Ab | Vb e €, A = gg'(a)},

we have Fla] C C[g(a), G]

(4b)(3). The mapping g is said to have a Gateaux differential at a in the
direction b, if the limit

lim (1) (gt + tb) — g(@)) = V(@ b

exists.

If V(a, b) exists for every b € € and if V(a, b) is linear in b (which means
V(a, b) = A(a) - b; A(a) € (€, E)), then A(a) is the Gateaux derivative of
g at a; A(a) = g'(a). If the Gateaux differential at g exists for all b € € and if

. 1
lim Tl (lgla + b) — gla@) — V(a, b)) = 0, (18)

then g has a Frechet differential at a. Denoting
Fla] = {V(a, b)| b € €}

we have F[a] C C[g(a), G]; but F[q] is not a linear space. In the following
L[a,] will stand for G[a,] or Fa,], if they are nonvoid; it is a particular linear
subspace of C[ g, , G1.

CoROLLARY 10. Let E be a normed linear space and let G = {g(a)| a € P}
be subset of E such that for Ya € P, 8]a] is nonvoid, f€ E\adh G and g, € G. If
8o € £6(f), then M;_, N Lay] is nonvoid.

TureoReM 11. Let E be a normed linear space and G subset of E such that
for Ya e P, L[a] is nonvoid. Let f € E\adh G and g, € G. If the Local
Kolmogoroff condition on G versus 8la,} is sufficient, then g, € 8(f) if and
only if M,_,, N 8%g,] is nonvoid.

In Fig. 6 and Fig. 7 an example is given for the set M,, N £9%a,), cor-
responding to a particular approximation problem in R3.

Remark. Corollary 10 was given by Laurent in [7, p. 247; Theorem 2]
for the particular case 2[a]l = Gla].



Fig. 7.

Glao) + 9o

If g, € £6(f) then S[R,_,,o N G%a,] is nonvoid.
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(4c) Geometrical Interpretation.

To obtain a geometrical interpretation of the characterization theorem of
type II, we deduce first a theorem which will interpret the nonvoidness of
Smf_go N M,%[g, , G] and in particular of M,_, N L%a,].

THEOREM 12. Let E be @ normed linear space, G a subset of E, let
feE\adh G and gy G. Let A be a nonvoid subset of E containing 0. The
Jollowing statements are equivalent:

(1) The set M;_, N A° C E* is nonvoid.
(2) The hyperplane H[L, L(f) — || f — g, ||] supports the ball

B(f,IlLf — &

and passes through the translated set (4); = A + g -

Proof. 1f LeM,_, N A° then by Property A; H[L, L(f) — ||l f — &}
supports the ball B(f, [| f — g |l). For Vz & (4), we have

L(z) = L(gy) = L(f) — I f — &l .

Conversely, if H supports B(f, r), by Property A we are ensured there exists a
unique L e Sg. such that Vy e H, L(y) = L(f) — ||f — go || . Since H passes
through (4), , L(x) is a constant for all x € 4. As 0 € 4, we have
Le, , N A°. Q.E.D.

Applying Theorem 12, Lemma 7(a) and Theorem 8, we obtain

THEOREM 13. Let E be a normed linear space, G a subset of E, let
feE\adh G and goc G. Let the cone Clg,, G] contain a nonvoid linear
subspace M,[ g, , G].

(@) Ifg, € Ls(f), then: (i) there exists a hyperplane H which supports the
ball B(f, || f — g ) and passes through the translated linear subspace

(M,[ g, Gg, -

(b) If the Local Kolmogoroff condition on G versus M,[g,, G] is
sufficient, then g, € Ls(f) if and only if the preceding condition (i) holds.

Obviously in Theorem 13, M,[ g, , G] can be replaced by £[a,], if it is nonvoid.
In Fig. 8 (i) of theorem 13 is illustrated.
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B, 1 -gol)

Mc[go.G])goC H

Fic. 8. Geometrical interpretation of the characterization theorem of type II.

5. REFINEMENT OF THE CHARACTERIZATION THEOREM OF TYPE II

(5a) If the linear subspace M,[ g, , G] is of finite dimension, the charac-
terization theorems stated in Section 4 can be refined. This is based on
Singer’s following extension of Caratheodory’s theorem:

THEOREM 14 [10, p. 169]. Let E be a normed linear space and E, a k-
dimensional linear subspace of E. Let Le E*, || L| g, = 1. There exist
extremal points L, ..., L, of the unit ball Bg., where h < k for a real E,
h < 2k — 1 for a complex E, and positive scalars Ay ,..., A, with 2;;1 A=1,
such that

n
L(g) = Z AL g); Vge k.
=1

LemMA 15. Let E be a normed linear space, G a subset of E, let f € E\adh G
and g, € G. Let M| g, , G] be a nonvoid finite dimensional subspace in Cl g, , G)
of dimension d. If g, € 8,(f), then there exist linear functionals
Ly,..., Ly € C(Bss) where h < d + 1 forareal E, h < 2d + 1 for a complex E
and scalars Ay ..., A fiy 5oy pr, Such that the following equivalent conditions
(D)—(4) are satisfied:

() Ay,..., A, are positive,

(@ i A =1, (19)
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) ¥ ALWM=0; VkeMlg, Gl (20)
14
i) Y, AL = g) = 1/ — gl @

(2) Ay +++ A, are positive, satisfy (19), (20) and
Lf —g)=If— gl j=1:-h (22)
(3) Each p;is # 0, and

O 3 lml=1, @3)

@) ¥ WL =0; VkeMig, Gl 24)
i

i) 3 LS~ g0 = I — sl 5)

(4) Each u;is # 0, and we have (23), (24) and
Li(f —go) = Gignp) - | f —&ll; j=1..h (26)
(where sign o = a/| « |, for o £ 0).

Proof. By Lemma 7 we only need to prove equivalence between condi-
tions (1) to (4) and the following

condition (0) : The set imf_,,o N M. g, , G] is nonvoid.
Defining N = M,[go, G] ® (f — go), one has || L |y || = 1 for
LeM,_,, 0" MOg, G

By virtue of Theorem 14 there exist linear functionals L, ..., L, € €(Bg.)
and numbers A, ,..., A, > 0 such that we have (19) and

L
L) = ) ALY Yoe N
j=1

which proves (0) — (1). Forj = 1,..., h we have
Re L(f — g =/ — &l

If— &l <TL{(f — gl <|f— &l

and
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Since, if there were a jo €{1, 2,..., h} such that Re L; (f — go) <|lf — gl
then

1f— gl = ReS  AML(F — 80) < Tou X I — goll = 1 f — &l »

which is false. Consequently (1) — (2). Further (2) — (4) > (3) is obvious.
Finally (3) — (0) follows by taking L == Z, 1L Q.E.D.

THEOREM 16. Let E be a normed linear space, G a subset of E, let
fe E\adh G and gy G. Let M,[ g, , G] be a nonvoid finite dimensional linear
space in C[ g, , C] with dim Mg, , Gl = d. If the Local Kolmogoroff condi-

tion on G versus M, g, , G] is sufficient, then g, € Lc(f) if and only if the
equivalent conditions of Lemma 15 hold.

COROLLARY 17. Let E be a normed linear space, G a subset of E, let
fe E\adh G and gy G. Let 8[a] be a nonvoid linear space for Yae P. Let
Lla,] be a finite dimensional linear space:

span{l, | k = 1 - d[a,]} = a,].

(@) If gy Qs(f) then there exist linear functionals L, ,..., Ly € €(Bgs),
where 1 < h <d[ay] +1if Eisreal, 1 <h<2d[ay] + 1 if E is complex,
and there exist numbers Ay ,..., Ay, , py »..., 1y Such that the following equivalent
conditions (1)-(4) are satisfied:

(1) Ap,..., Ay are positive and satisfy (19), (21), and

M§*

NL(L) = 05 k= 1,..., da,]. @7

-,
I
-

Q) A ,..., Ay are positive and satisfy (19), (22) and (27).
(3) Wy 5e.., i, are nonzero, and satisfy (23), (25) and

S wLd) =0 k=1, dla) 28)
j=1

4)  uy,..., us are nonzero and satisfy (23), (26) and (28).
(b) If, in addition, the Local Kolmogoroff condition on G versus M,[ g, , G|
is sufficient, then g, € 2¢(f) if and only if the preceding conditions (1)-(4) hold.
(5b) Geometrical Interpretation

Based on Theorem 12, a geometrical interpretation of Lemma 15,
Theorem 16 and Corollary 17 can be obtained.
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THEOREM 18. Let E be a normed linear space, G a subset of E, let
fe E\adh G and gy € G. Let M| g, , G] be a nonvoid finite dimensional linear
space in Cl g, , Gl withd = dim M_,[ g, , G].

@) If go€ Ls(f), then: (i) there exists a hyperplane H which is a convex
combination of h extremal hyperplanes (} <h <d+lor1 <h<2d41
according to whether E is real or complex) each supporting the ball
B(f,|f — g ) at g ; H passes through (M,[ g, , G]),, -

(b) If, in addition, the Local Kolmogoroff condition on G versus
M,[ g, , G] is sufficient, then g, € 8s(f) if and only if the preceding condition
(i) holds.

6. DuAaLITY RELATIONS

(62) Basic duality relations pair up two extremal problems, the one in
a given space, the other in the corresponding dual space. The following
theorem links such dual problems.

THEOREM 19. Let E be anormed linear space, G a subset of E,let f € E\adhG
and g, < G.

(@) If (D) & € 2a(/),
(ii)) M is a nonvoid linear subspace in E (M not necessarily closed)
such that 0 € 8pm(f — go), then
If— &l = [If — &ll-
(b) If () the Local Kolmogoroff condition on G is sufficient,
(i)
If — 8o llcoteg.00 = ILf — &olls
then g, € 8:(1).
Proof. (a) M? C E* implies
If— &ollme < IF— &ll-

By Lemma 7(a) there exists a linear functional L € M,_, N M°.
Moreover:
If — golwe =, sup | L'(f — gl = | L — gl = Ilf — &l

eMNBgx

() f— &l = sup I[L'(f— gl <|If— & — K,

L’eC®lgy, GINBgx

Vk e Clg,, Gl
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Consequently we have 0 € £¢(, .61 (f — &) By Lemma 7(b) and the assump-
tion (i). on G, this is equivalent with g, € 5(f). Q.E.D.

THEOREM 20. Let E be a normed linear space and G a subset of E, let
feE\adh G and gy G. Let M,[g,, G] be any nonvoid linear subspace in
C[g 0> G]

@ 1Ifgo€ Ls(f), then

1/ — &ollmotsg.61 = 1S — & . (29)

(b) If the Local Kolmogoroff condition on G versus Mg, , G] is
sufficient, then g, € 2(f) if and only if (29) holds.

Proof. The proof is similar to that of Theorem 19, applying Theorem 8.
In Theorem 20 one can replace M,[g,, G] by £[a,]. In Fig. 9 the conclusion
(29) of Theorem 20 is illustrated. To state complete duality relations we
quote the following

Mc [Qo.G] +3o

Fic. 9. If g, 8e(f) then || f — golim 00,61 = I/ — & .

THeoReM 21 [10, p. 21; Corollary 1, 2b]. Let E* be the conjugate space
of a normed linear space E, and let I' be a o(E*, E)-closed linear subspace of
E* Let Le EX\I" and yy € I. Then y, € p(L) if and only if

WL — Plorlf =L — ol
(6b) Relations
(1a) g, € Ls(f) implies

infllf —gll =, max |L(f— gl
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(Ib) If the Local Kolmogoroff condition on G versus M,[g,, G] is
sufficient, then g, € £,(f) is equivalent with

infllf—gll = max [ L(f — gl (30)

LeMO[g,.GINBgx
(2) yo€ £r(L) is equivalent with

sup (L — y)(/)| = min|| L — y]. (1)

10rn

(6c) Geometrical Interpretation

The relation (30) can be formulated as:

p(f, G) = Ilf — &olm, 160,61 5

which indicates that the distance from f to the set G is given by the norm of
f— goon M g,, G]. Similarly, relation (31) can be reformulated as:

p(L, I') = (L — yo)lor|

and expresses equality between the distance from L to the set I" and the norm
of the linear functional restricted to °I".

7. CONCLUSION

Our main purpose was to present a unified approach to nonlinear approx-
imation theory, extending some of Singer’s results from the linear theory.

In general normed vector spaces, nonlinear approximation theory has
already been provided with extensions of the Kolmogoroff condition [given
by Brosowski in [3] and repeated here in Lemmas 1 and 2]. Based on these
results and on the Hahn-Banach extension theorem we obtained a general
characterization theorem (Theorem 8). If the functions are Gateaux (resp.
Frechet) differentiable we have a characterization theorem which holds if some
requirements concerning the subset G C E are fulfilled (Theorem 11). This
characterization theorem was further refined to obtain a more explicit
formulation (Theorem 16). Throughout this paper geometrical interpretations
were given for all characterization theorems. Finally, duality relations were
given. As in linear approximation theory, they pair up two extremal problems,
one in the normed space E, the other in the weak * dual.
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