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The present paper deals with several characterization theorems for best
approximation in normed vector spaces by nonlinear elements. Guided by the
outstanding results of Singer in the linear theory, some results of Laurent and
Brosowski are generalized so as to obtain a unified approach for the linear and
nonlinear approximation theory. Characterization theorems are formulated
which assert the existence of particular linear functionals. We give geometrical
interpretations to all our characterization theorems; also duality relations are
given.

1. INTRODUCTION

Recently Singer presented a complete unified theory of approximation in
a general normed linear space by elements of a linear subspace [10]. These
results provide a modern theory of best approximation, which uses in a
systematic manner the methods of functional analysis, general topology and
geometry. Linear functionals playa central role in Singer's approach and
this is mainly due to the duality relations between a given extremal problem
in a linear space and the corresponding extremal problem in the dual space.
Once the problem is embedded in this general context, proofs often become
straightforward.

Brosowski introduced in [3] generalizations of the Kolmogoroff conditions,
for nonlinear approximations in general normed linear spaces. To extend
completely Singer's unified theory, a main theorem was still missing, asserting
the existence of linear functionals with certain properties. In this contribution
such a necessary and sufficient a condition is given, which shows the exis
tence of some particular linear functionals (Lemma 7.). The necessary condi
tion reduces in a particular case to the condition given by Laurent in [7], and
earlier by Brosowoski in [2, p. 47] (restricted to a Chebyshev norm). How
ever our deductions are independent of these results.
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We give also a refined version of the above characterization, based on
Singer's extension of Caratheodory's theorem. Effort is made to present
results in a form similar to the unified approach of Singer. Consequently,
differences between the linear and the nonlinear theory become apparent.

In Section 2 the general approximation problem is stated together with a
list of some relevant concepts used throughout this paper. Most of them are
standard [6]. In Section 3, the extensions of the Kolmogoroff conditions are
reformulated and geometrically interpreted. They consist of a local necessary
and a global sufficient condition and are called here characterizations of
type I. Section 4 is devoted to a necessary and sufficient condition concerning
the existence of particular linear functionals. A complete characterization
theorem is obtained and called of type II (Theorem 8). If, in addition, a
Gateaux (resp. Frechet) derivative exists for the approximating functions,
this characterization theorem can be reformulated (Theorem II).
Geometrical interpretations of these characterization theorems are obtained.
In Section 5 a refinement is given of the characterization theorems of type II
which is, too, geometrically interpreted. Finally duality relations are obtained
in Section 6.

2. STATEMENT OF THE PROBLEM. NOTATIONS

(2a) The problem of best approximation consists in finding, for a given
function IE E (a normed linear space), an approximating function go belong
ing to a given nonvoid subset G of E, such that:

[[I - go [[ = inf 1[1 - g [I·
gEG

The set of all best approximating functions go E G for I will be denoted by
~G(.f):

~G(f) = {go E G 11[1 - go II = inf [I! - g II}.
gEG

To exclude trivial cases we suppose G is not dense in E and/E E\adh G.

(2b) It is convenient for nonlinear approximation problems to define
a particular subset of the normed linear space E : [3, p. 147; 8, p. 2].

An element h E E will be called an adherent displacement for G starting
from go E G if for every neighborhood of h (denoted N,.) and for every € > 0
there exists an TJ E] 0, € [and an h' E Nil such that go + TJ • h' E G.

The set of all adherent displacements will be denoted by C[ go, G]; it
is a nonvoid closed cone with vertex at the origin. (h E C => )Jz E C, A > 0).
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By [8, p. 10] : if G is a convex subset of E and go E adh G, then the cone
of adherent displacements C[ go, G] is also convex and is given by

C[go, G] = adh !U .\(adh G - go)l.
A>O

In general, the following inclusions hold:

C[go, G] C adh I U.\(adh G - go)! ~ adh G - go·
A>O

(1)

In the particular case in which G is a linear subspace of E, the following
identity is valid:

C[ go , G] = adh G - go .

(2c) Linear functionals playa central role in characterizing the best
approximating function. We mention in this connection several concepts
and properties.

Let E* denote the conjugate space of the normed linear space E, namely,
the space of all continuous linear functionals on E, endowed with the classical
vector operations and the norm

II L [I = sup IL(f)I,
tEBE

LEE*,

where BE = {f E E Illfll ~ 1} denotes the unit ball in E. The space E* will
be provided with the weak* topology a(E*, E) (simple convergence topology
on E*). The unit ball in E*, denoted (BE'), is known to be compact for
a(E*, E) (theorem of Alaoglu). A set 9R in a topological linear space is called
an extremal subset of a closed convex set A, if 9R is a nonvoid closed convex
subset of A, and if the relations x, yEA and Ax + (1 - .\) y E 9R, with
.\ E ]0, 1[, imply x, y E 9R. An extremal subset of A consisting of a single
point is called an extremal point of A. The set of all extremal points of A is
denoted by (f(A). The set

9Rt = {L E SE.I L( f) = Ilfll} ,IE E\{O}

(where S1'." = {L E E* III L II = 1} is the unit sphere in E*) is a nonvoid
extremal subset of the ball BE' endowed with a(E*, E) [10, p. 59], and is hence
a(E*, E)-closed. Moreover, since BE' is compact in a(E*, E), so is 9Rt . By
[6, p. 78], (f(9Rf ) is nonvoid, and is (f(BE') n 9Rt [10, p. 58].

The annihilator in E* of a nonvoid subset A of the linear space E is

AO = {L E E* I L( y) = 0, Vy E ACE};
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the annihilator in E of a nonvoid subset B of the linear space E* will be
denoted °B. The number II fllr , where fEE and r C E* is defined as

Ilfllr = sup IL(f)I.
l.erf\BE*

The restriction of a linear functional L E E* to \)r C E win be denoted L 10 .r

(2d) In order to state clearly the geometrical interpretation of the
characterizations, we need to introduce some geometrical concepts.

B(f, r) = {g E E III g - f[1 ~ r}

is a ball in the normed linear space E, and H[L, a] = {g EEl L(g) = a} is a
hyperplane in E. The distance of an element fE E from the hyperplane
H[L, \Xl is given by

p(f, H[L, a]) = I L( f) - ai/II L II.

The set ACE supports the ball B(f, r) if and only if peA, B(f, r»= 0 and
the set [A n int. B(f, r)] is void. By [10, p. 25] this is equivalent with
p(f, A) = r. A real hyperplane H[Re L, a] is called an extremal hyperplane if
L E C£(BE ,). Moreover, in a normed linear space E, a real hyperplane
H[Re L, ex] is said to separate the subset ACE from the subset BeE, if A is
contained in one of the real half-spaces {k EEl Re L(k) "?- ex) or

{k EEl Re L(k) ~ a},

and B in the other.
A hyperplane H is said to pass through the set M if M C H. The following

property will prove to be very useful.

Property A. pO, p. 25j

Let E be a normed linear space, fEE, r > O. Then for any L E E* with
LESE' the hyperplane H[L, L( f) - r] supports the ball B(f, r), and for any
support hyperplane H of the ball B(f, r) there exists a unique L E E* with
L E SE* such that H = H[L, L( f) ~ r].

The approximation problem can be reformulated in this geometrical
context, and consists in finding a point go E G such that its distance to f
(denoted p(!, go) equals the distance off to G,

p(f, G) = inr p(f, g).
geG

All points go satisfying this requirement form the set £G( f)· In linear approxi
mation theory (G a linear subspace of E), go E £G( f) is equivalent to the
existence of a linear functional L E IDlf - g n GO, defining a hyperplane

o
H[L,O], which passes through G and supports the ball B(f, Ilf - go II).
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Consequently, the linear space G and the hyperplance H are at equal distance
tol

In the following we will give the geometrical interpretation of the extension
of these results.

3. CHARACTERIZATION THEOREMS OF TYPE I

(3a) Extended Kolmogoroff Conditions

The following Lemma I and Lemma 2 are known extensions of the
Kolmogoroff condition [3]. They are presented here in a form suitable for
geometrical interpretation; see Singer [10, 59-62].

LEMMA I. [3, p. 148]. Let E be a normed linear space and G a subset ofE,
with f E E\adh G and go E G. If go E £G( f), then for every hE C[go , G], there
exists a linear functional Lh E E* such that:

(i) Lh E'i(BE*),

(ii) Lh(j - go) = Ilf - go II ,
(iii) Re Lh(h) ~ O.

(2)

(3)

(4)

LEMMA 2. [3, p. 141]. Let E be a normed linear space and G a subset ofE,
withfE E\adh G and go E G. Iffor every g E G there exists a linear functional
VI E E* such that:

(i) P E'i(BE _), (5)

(ii) P(j - go) = Ilf - go II , (6)

(iii) Re P(g - go) ~ 0, (7)

then go E £G( I).

(i)-(iii) of Lemma 1 are known as the Local Kolmogoroff condition on G.
Their necessity is presented in [3] and [5, p. 370] as : if go E £G( f), then for
every h E C[go , G],

(8)

Similarly (i)-(iii) of Lemma 2 are known as the Global Kolmogoroff condition
on G. Their sufficiency can also be stated in the following form, according to
[3] and [5, p. 370]: if for every element g E G,

(9)
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FIG. 1. The Local and Global Kolmogoroff conditions in R".

The Fig. 1 will be helpful in interpreting the preceding Lemmas. For the
problem of approximating fEE by elements of GeE where the normed
space E = R3, we obviously have go E i?G( f). By Lemma 1 there exists a
unique linear functional L satisfying L E (f(BE .) n 9Rt - go ' where L(h) = h3

for Vh E R3, h = (hi' h2 , ha). The local Kolmogoroff condition (2)-(4) or (8)
is satisfied since Re L(h) ~ 0 for Vh E ergo , G]. The Global Kolmogoroff
condition on G is also satisfied for the unique L defined above. Since

Re L(g') ~ 0 for Vg' E G - go ,

by (5)-(7) or (9), go E £G( f). By Fig. I it is easily verified that the Local
Kolmogoroff condition is only necessary. Remembering that in general the
subset G of E is only partially contained in C[go , G], we see that even if (8)
is satisfied for all elements hE C[go , G], there may exist an element g E G
belonging to ,intB(f, [If - go 11), so that go 1= £G( I). Similarly, the Global
Kolmogoroff condition is only sufficient. Indeed if go E i?G( f), there may
exist some g E G for which (9) is not satisfied.

The condition (2)-(4) of Lemma 1, as well as (5)-(7) of Lemma 2 can be
expressed in equivalent forms. In particular, for the condition of Lemma 2
we have the following equivalent variants:
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COROLLARY 3. Let E be a normed linear space and G a subset of E, with
fE E\adh G and go E G. If for every g E G there exists a linear functional
LY E E* such that one of the following equivalent conditions is satisfied:

(a) (i) Lg E <r(IDlf _ g ),
o

(ii) Re L9(go - g) ? O.

(b) (5), (10) and Re LY(f - go) = Ilf - go II·

(c) (i) (5),

(ii) Re [LY(go - g) . Lg(f - go)] ? 0,

(iii) I Lg(j - go) I = I[f - go II,

then go E £G( f)·

Proof Obviously (a) -- (b). We have (b) -- (a) since

(10)

and consequently Lg(j - go) is real and ? O. Obviously we also have
(a) -- (c). To prove (c) -- (a), we define the linear functional

£g = [sign LY(j - go)] . Lg, where sign ex = iX/I ex I.

Consequently £9 E <r(BE.) and

Re £9(go - g) = Re[Lg(go - g) . U(f - go)] ? 0

£g(f - go) = I U(f - go)1 = II! - go II·
Q.E.D.

Remark. In the particular case in which G is a linear subspace of E, the
facts C[go, G] = adh G - go and g - go E G for Vg E G, reduce Lemma 1
and Lemma 2, respectively, to the necessary and sufficient parts of the
Kolmogoroff condition

min Re L(g) ~ 0;
LE(f(~f_'o)

for go to satisfy go E £G( f) [10, p. 62]. The condition can also be stated as

max Re L(g) ? 0;
LE(f(~f_'o)

Vg E G.

(3b) Properties (B)

(Bl) If G is a nonvoid subset of E, the following statements are equiv
alent [5, p. 371, 383]:
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satisfied for
on C[go, G]

Q.E.D.

(i) The Global Kolmogoroff condition on G is necessary,

(ii) For every fEE, all elements g E G satisfying g E £G( f) satisfy
also g E £G(g + A(f - g» for all A~ 1.

(Fig. 1: go E £G(go + A(f - go», VII. ~ 1).

(B2) If the subset G of E satisfies G C C[go , G] + go , then:

(i) The Local Kolmogoroff condition on G is sufficient,

(ii) The Global Kolmogoroff condition on G is necessary.

Proof If go E £G( f), then (8) is valid for Vh E C[go , G] and consequently
(8) is valid for Vh E G - go which means that (9) is valid for Vg E G. Q.E.D.

(B3) If G is convex, then by (1), C[go , G]-:J G - go and consequently
(i) and (ii) of (B2) hold.

(B4) If go E £G( f) then:

(i) 0 E £c[go.Gl (f - go),

(ii) go E £c[go.Gl+uo ( f).

Proof By the Local Kolomogoroff condition, (8) is
Vh E C[go, G], which by the Global Kolmogoroff condition
proves 0 E £c[uo.G](f - go).

(B5) The following statements are equivalent

(i) 0 E £C[go.Gl(f - go),

(ii) min Re L(h) :(; 0,
LEIt(9Jl,_.)

Vh E C[go , G].

Proof If 0 E £c[uo.Gl (f - go), then by the Local Kolmogoroff condition
on C[go, G] we have (8) for Vh E C[O, C[go, G]]. We have C[go, G] =
C[O, C[go , G]], since, applying the general inclusion for the cone of adherent
displacements, we obtain C[O, C[go , G]] C C[go , C]. Conversely, applying
the definition of the cone of adherent displacements, it becomes obvious that
Y E C[go ,G] implies y E C[O, C[go ,G]]. Consequently we have (8) for
Vh E C[go , G].

If (ii) is satisfied, by the global Kolmogoroff sufficient condition we obtain
immediately (i). Consequently, the Global Kolmogoroff condition on
C[go , G] is necessary and sufficient. Q.E.D.

(3c) Geometrical Interpretation

We deduce first a theorem expressing in geometrical terms, the requirements
of the Kolmogoroff conditions on G.
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THEOREM 4. Let E be a normed linear space, G a subset ofE,fE E\adh G
and go E G. Let L E BE' and let h be a given element ofE. The following state
ments are equivalent.

(a) The linear functional L E E* satisfies

(i) L E (f(BE*),
(ii) Re L(h) ~ 0,

(iii) L(f - go) = Ilf - go II .
(b) The real support hyperplane H[Re L, Re L( f) - Ilf - go II] of the

ball B(f, Ilf - go II) is extremal, passes through go and separates {h + go}from
B(j, Ilf - go II).

Proof The real support hyperplane is extremal if and only if L E (f(BE .).

If L(f - go) = Ilf - go II , it follows immediately that

HIRe L, Re L( f) - IIf - go II]

passes through go . Conversely, if we have

Ilf - go II = Re L(j - go) ~ I L(j - go) I ~ Ilf - go II,

then L(j - go) is real and?, 0, and L(j - go) = Ilf - go II . For

Vy E B(j, Ilf - go II)
we have

Ilf - go II ?' IL(f - y)[ ?' Re L(f - y)

and consequently for H to separate {h + go} from B(j, Ilf - go II) it is
necessary and sufficient that

Re L(h + go) ~ Re L( f) - Ilf - go II .

Assuming that we have L(j - go) = Ilf - go II , or that H passes through go,
we obtain Re L(h) ~ °for the element h of E. Q.E.D.

The geometrical interpretation of the Local Kolmogoroff condition is now
easily obtained as

THEOREM 5. Let E be a normed linear space, G a subset of E, f E E\adh G
and ergo, G] a nonvoid subset ofE. Ifgo E £G( f), then for every h E ergo , G]
there exists a real extremal hyperplane H" which supports the ball

B(f, Ilf - go ID,
passes through go and separates {h + go} from B(j, Ilf - go ID.

If, in addition, the Local Kolmogoroff condition is also sufficient, then the
preceding statement is equivalent with go E £G( f).
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FIG. 2. Geometrical interpretation of the Local Kolmogoroff condition.

This geometrical interpretation of the Local Kolmogoroff condition IS

shown in Fig. 2.
Analogously, the Global Kolmogoroff condition can be interpreted as

follows:

THEOREM 6. Let E be a normed linear space, G a subset of E and
f E E\adh G. If for every g E G, there exists a real extremal hyperplane HY
which supports the ball B(j, Ilf - go 11), passes through go and separates g from
Bef, Ilf - go II), then go E S!G(f).

If, in addition, the Global Kolmogoroff condition is necessary, then the
preceding condition is equivalent with go E S!G(f).

The geometrical interpretation of the Global Kolmogoroff condition is
represented in Fig. 3.

FIG. 3. Geometrical interpretation of the Global Kolmogoroff condition.
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4. CHARACTERIZATION THEOREMS OF TYPE II
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(4a) Based on the Hahn-Banach extension theorem, the existence of
linear functiona1s with particular properties can be proved. They playa crucial
role in nonlinear approximation theory, as in the linear case [10, p. 18]. We
deduce first a general necessary and also a sufficient condition for the
existence of these functionals.

LEMMA 7. Let E be a normed linear space and G a subset ofE,fE E\adh G
and go E G.

(a) If (i) go E f!G(f),
(ii) M is a nonvoid linear subspace in E (not necessarily closed) such

that 0 E f!M(f - go), then Wlf - g n MO is a nonvoid subset of E*.
o

(b) [f(i) the Local Kolmogoroff condition on G is sufficient
(ii) the set Wlf - g n CO[go, G] is a nonvoidsubset ofE*, then go E f!G(f).

o

Proof (a) SincefE E\adh G and go E f!G(f), we have Ilf - go II > O. This
together with 0 E f!M(f - go) imply f - go E E\adh M. Applying Singer's
theorem [10, Theorem 1.1, p. 18] to the linear approximation of (f - go) by
elements of the linear subspace M of E, we have that 0 E f!M(f - go), 0 E M,
is equivalent with the existence of a linear functional L in E* such that
II L II = 1, L(h) = 0 for Vh EM and L(f - go) = Ilf - go II .

(b) If the linear functional L E E* satisfies L E Wlf - g n CO[go , G], we
o

have

Ilf - go II = L(f - go - k) ~ Ilf - go - k II for Vk E C[go , G]

and consequently 0 E f!c[go.G] (f - go). By the property (B5) we obtain (8) for
all hE C[go, G]. Finally by the fact that the Local Kolmogoroff condition on
G is sufficient, we have go E f!G(f). Q.E.D.

Remarks (R).

(Rl) In some particular approximation problems, Lemma 7(b) can be
reformulated. We obtain the following corollaries by the properties (B2) and
(B3).

COROLLARY 7(c). Let E be a normed linear space, G a subset of E satis
fying G C C[go, G] + go, go E G,fE E\adh G. If Wlf _ g n CO[go, G] is a

o
nonvoid subset ofE*, then go E f!G(f).

COROLLARY 7(d). Let E be a normed linear space, G a convex subset of E,
fE E\adh G and go E G. IfWl f - g n CO[go, G] is a nonvoid subset of E*, then

o
go E f!G(f)·
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(R2) If G is a linear subspace in E, then Lemma 7(a) and Corollary 7(d)
reduce to Singer's Theorem 1.1 [10, p. 18] on the equivalence between
go E £G(f) and the nonvoidness of (9J'lf-g n GO).

o
Lemma 7(a) and Corollary 7(d) are respectively, represented in Fig. 4 and

Fig. 5 for the particular case E = R3.
By Lemma 7 it becomes obvious that a characterization theorem of

type II will be obtained if the cone C[go , G] could be replaced by a nonvoid
linear subspace of C[go, G]. These requirements are very restricting and
consequently are not fulfilled in general: there is no guarantee for C[go , G]
to contain a nonvoid linear subspace. In general, the cone C[go, G] will
contain a line through the origin if with a given function hE C[go , G], the
function (-h) is also contained in C[go , G]. If the cone C[go , G] with vertex
at the origin is convex (which is equivalent with C[go, G] + C[go , G] C
C[go, G] and ,\ . C[go , G] C C[go , G] for all ,\ > 0), then the largest linear
subspace contained in the cone C[go , G] is given by

[1, p. 47].

In the following we will formulate a characterization theorem, supposing
C[go, G] contains at least a nonvoid linear subspace Mc[go , G]. (i.e., a line
through the origin). In order to replace the cone of adherent displacements
C[go, G] by Mc[go, G] we introduce a Local Kolmogoroff condition on G
versus Mc[go , G]: if go E £G(f), then for every h E Mc[go , G],

min Re L(h) :(; O.
LE(f(IDlt _ go)

This condition is always necessary for go E £G(f).

(II)

Properties (C)

(CI) If the Local Kolmogoroff condition on G versus Mc[go , G] is
sufficient, then the Local Kolmogoroff condition on G is also sufficient.

Proof If there exists an element hE C[go , G]\Mc[go , G] such that (11) is
not satisfied, then the Local Kolmogoroff condition on G is contradicted.

QED

(C2) Let E be a normed linear space, G a subset of E, fE E\adh G,
go E G, and Mc[go, G] a nonvoid linear subspace of the cone C[go, G]
(Mc[go, G] is not necessarily closed).

If go E £G(f), then 0 E £Mc[go.Gl (f - go), or go E £Mc[go.Gl+Yo (f).

Proof If we have go E £G(f), then the Local Kolmogoroff condition is
always necessary. Consequently, Vh E C[go , G],

min Re L(h) :(; 0
LE(f(IDlt - go)
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MO

2

ABC =Ill f - 90

AD =!l\.f-90 nMO

FIG. 4. If go E EG(J) then set WIt-go rl MO is nonvoid.
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ABC =1ll f _9

FIG. 5. If WIt-go rl CO[go, G] is nonvoid in E* and G convex then go E EG(f).
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min Re L(h - 0) ~ 0,
LE(f(IDlt -·o- o)

(12)

(13)

which by the Global Kolmogoroff condition is necessary and sufficient for
°E Mc[go , G] to satisfy

Q.E.D.

Remark. Since Mc[go, G] is a linear subspace, the Global Kolmogoroff
condition is always necessary and sufficient for °E i!M.[go.G] (f - go).

We obtain now a complete characterization theorem of type II involving
the existence of special linear functionals in E*.

THEOREM 8. Let E be a normed linear space and G a subset of E, let
fE E\adh G and go E G. Let Mc[go, G] be a nonvoid linear subspace of E
contained in the cone C[go , G].

(a) If go E i!G(f), then IDl f - g n McO[go , G] is nonvoid.
o

(b) If the Local Kolmogoroff condition on G versus Mc[go, G] is
sufficient, then go E i!G(f) if and only ifIDlf - g n McO[go , G] is nonvoid.

o

Proof The necessity of the condition follows immediately from Property
(C2) and Lemma 7(a). We only need to prove sufficiency. If the linear
functional L E E* satisfies L E IDl f - g n McO[go , G], then

o

Ilf - go [! = L(f - go - k) ~ Ilf - go - k II for Vk E C[go , G]

and consequently: °E i!M.[go.G] (f - go).
Since Mc[go, G] is a linear subspace of E, we obtain (11) for Vh E Mc[go, G]

which is equivalent with go E i!G(f) since the Local Kolmogoroff condition
on G versus Mc[go , G] is supposed to be sufficient. Q.E.D.

In the particular case in which G is a linear subspace of E, Theorem 8
reduces to Singer's Theorem 1.1 [10, p. 18] with Mc[go , G] = G. According
to Singer, Theorem 8 can be formulated in some equivalent forms.

COROLLARY 9 [10, p. 19; Lemma 1.1]. Let E be a normed linear space,
G a subset of E, fE E\adh G and go E G. Let M be a linear subspace in E.
Thefollowing statements a, b, c, d, e andf

(a) L E j}J1f-g
o

n MO.

(b) (i) L E SE* n MO,

(ii) Re L(f - go) = Ilf - go II.
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(c) (i) L E SE* ,

(ii) Re L(h) = 0, Vh E M,

(iii) (13).

(d) (i) (12),

(ii) IL(j - go)I = Ilf - go II .
(e) (i) (12),

(ii) I Re L(j - go)I = Ilf - go II·
(f) (14), (15) and (16).

177

(14)

(15)

(16)

(4b) Particular Linear Subspaces Contained in C[go , G]

Using the general concept of differentiation [9, Chapter 3] we give explicit
examples oflinear spaces Mc[go , G] contained in the cone C[go , G]. Suppose
GeE satisfies G = {g(a)1 a E P} where P is an open subset in a normed
vector space <r.

(4b)(1) Assume g to be Gateaux differentiable at an interior point a of P,
which means that there exists a linear operator A E £[<r, E] such that for any
bE <r:

lim (1.-) '11 g(a + tb) - g(a) - t . Ab II = o.
/->0 t (17)

The unique linear operator A E £[<r, E] for which (17) holds, will be denoted
by gG'(a) and called the Gateaux derivative of g at a. Consider now the
linear subspace G[a] of E, defined as

G[a] = {Ab IA = gG'(a), b E <r}.

Then G[a] C C[g(a), G] since for any given positive numbers 0 and E, as g is
Gateaux differentiable, there exists a to > 0 such that to < E and

II Ab - g(a + to;} - g(a) II < o.

Taking 'YJ = to , one obtains

g(a) + 'YJ • g(a + tob) - g(a) E GeE.
to

(4b)(2) We consider now a stronger form of differentiation. The
mapping g is Frechet differentiable at a point a E P if there is a linear operator
mE £[<r, E] such that

~EJ II i 1llf '11 g(a + b) - g(a) - mb II = o.
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The linear operator m: is denoted by giJ'(a) and called the Frechet derivative
of gat a. Defining the linear subspace in E,

lJ[a] = {m:b I Vb E (t, m: = giJ'(a)},

we have mal C C[g(a), G]

(4b)(3). The mapping g is said to have a Gateaux differential at a in the
direction b, if the limit

lim (~) . (g(a + tb) - g(a)) = V(a, b)
t->O t

exists.
If V(a, b) exists for every bE (t and if V(a, b) is linear in b (which means

V(a, b) = A(a) . b; A(a) E £«(t, E)), then A(a) is the Gateaux derivative of
g at a; A(a) = g'(a). If the Gateaux differential at a exists for all b E (t and if

ii-m-m.(II g(a + b) - g(a) - V(a, b)ID = 0, (18)

then g has a Frechet differential at a. Denoting

F[a] = {V(a, b)1 bE (t}

we have F[a] C C[g(a), G]; but F[a] is not a linear space. In the following
£[ao] will stand for G[ao] or lJ[ao], if they are nonvoid; it is a particular linear
subspace of C[go , G].

COROLLARY 10. Let E be a normed linear space and let G = {g(a)1 a E P}
be subset ofE such that for Va E P, £[a] is nonvoid,fE E\adh G and go E G. If
go E £G(f), then Wl f - g n £O[ao] is nonvoid.

o

THEOREM 11. Let E be a normed linear space and G subset ofE such that
for Va E P, £[a] is nonvoid. Let f E E\adh G and go E G. If the Local
Kolmogoroff condition on G versus £[ao] is sufficient, then go E £G(f) if and
only ifWlf - g n £O[ao] is nonvoid.

o

In Fig. 6 and Fig. 7 an example is given for the set Wl f - g n £O[ao], cor-o
responding to a particular approximation problem in R3.

Remark. Corollary 10 was given by Laurent in [7, p. 247; Theorem 2]
for the particular case £[a] = G[a].



FIG. 6. If go E f!-o(f) then 9J1t - oo II (J°[aol is nonvoid.
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(4c) Geometrical Interpretation.

To obtain a geometrical interpretation of the characterization theorem of
type II, we deduce first a theorem which will interpret the nonvoidness of
9J'lf-g n MeO[go, G] and in particular of 9J'lf-g n £O[ao]'o 0

THEOREM 12. Let E be a normed linear space, G a subset of E, let
f E E\adh G and go E G. Let A be a nonvoid subset of E containing O. The
following statements are equivalent:

(1) The set 9J'lf-g n AO C E* is nonvoid.
o

(2) The hyperplane H[L, L(J) - Ilf - go II] supports the ball

B(f, Ilf - go [I)

and passes through the translated set (A)g = A + go .o

Proof If L E 9J'lf-g n AO, then by Property A; H[L, L(J) - Ilf - go II]
o

supports the ball B(j, Ilf - go II). For Vz E (A)g we have
o

L(z) = L(go) = L(f) - Ilf - go II .

Conversely, if H supports B(f, r), by Property A we are ensured there exists a
unique L E Sp such that Vy E H, L( y) = L(J) - [If - go II . Since H passes
through (A)g , L(x) is a constant for all x E A. As 0 E A, we have

o
L E 9J'lf-g n AO. Q.E.D.

o

Applying Theorem 12, Lemma 7(a) and Theorem 8, we obtain

THEOREM 13. Let E be a normed linear space, G a subset of E, let
fE E\adh G and go E G. Let the cone C[go, G] contain a nonvoid linear
subspace Me[go , G].

(a) Ifgo E £G(J), then: (i) there exists a hyperplane H which supports the
ball B(j, ilf - go [I) and passes through the translated linear subspace

(Me[go, G])go'

(b) If the Local Kolmogoroff condition on G versus Me[go, G] is
sufficient, then go E £G(J) ifand only if the preceding condition (i) holds.

Obviously in Theorem 13, M e [ go, G] can be replaced by £[ao], if it is nonvoid.
In Fig. 8 (i) of theorem 13 is illustrated.
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FIG. 8. Geometrical interpretation of the characterization theorem of type II.

5. REFINEMENT OF THE CHARACTERIZATION THEOREM OF TYPE II

(5a) If the linear subspace Mc[go, G] is of finite dimension, the charac
terization theorems stated in Section 4 can be refined. This is based on
Singer's following extension of Caratheodory's theorem:

THEOREM 14 [10, p. 169]. Let E be a normed linear space and Ek a k
dimensional linear subspace of E. Let L E E*, II L IE II = 1. There exist

k

extremal points L 1 '00" Lh of the unit ball BE., where h ~ k for a real E,
h ~ 2k - 1 for a complex E, and positive scalars Al "00' Ah with :L:=1 Ai = 1,
such that

h

L(g) = L AjLiCg);
i=1

LEMMA 15. Let E be a normed linear space, G a subset ofE, letfE E\adh G
andgo E G. Let Mc[go , G] be a nonvoidfinite dimensional subspace in C[go , G]
of dimension d. If go E S!G(f), then there exist linear functionals
L1 '00" L h E <r(BE .) where h ~ d + 1for a real E, h ~ 2d + 1for a complex E
and scalars Al '00" Ah , fJ-l ,... , fJ-h such that the following equivalent conditions
(l)-(4) are satisfied:

(1) '\ '00" Ah are positive,

h

(i) L Ai = 1,
j=1

(19)
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h

(ii) L AjL;(k) = 0;
i~1

h

(iii) L AjL;(f - go) = Ilf - go II.
i~1

(20)

(21)

(2) A1 ... Ah are positive, satisfy (19), (20) and

Lif - go) = Ilf - go II , j = 1 ... h

(3) Each iLi is =F 0, and

h

(i) I I iL; [ = 1,
j~1

(22)

(23)

h

(ii) I iL;L;(k) = 0;
j=1

(24)

h

(iii) L iLjL;(f - go) = Ilf - go II·
j=1

(25)

(4) Each iLi is =F 0, and we have (23), (24) and

L;(f - go) = (sign iLj) . Ilf - go II; j = 1,... , h (26)

(where sign (X = ii/I (X I , for (X =F 0).

Proof. By Lemma 7 we only need to prove equivalence between condi
tions (1) to (4) and the following

condition (0) : The set ID'lf-g n McO[go, G] is nonvoid.
o

Defining N = Mc[go , G] EB (f - go), one has II L IN II = 1 for

L E ID'lf-go n McO[go , G].

By virtue of Theorem 14 there exist linear functionals Lt ,..., L" E (f(BE .)

and numbers A1 , •.. , Ah > 0 such that we have (19) and

h

L(v) = L A;L;(v);
i=1

VVEN

which proves (0) --4 (1). For j = 1,... , h we have

and
Re Lif - go) = Ilf - go II

Ilf - go II :(; I L;(f - go)I :(; Ilf - go II .
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Since, if there were a jo E {I, 2, ... , h} such that Re L j (j - go) < Ilf - go II,
o

then

Ilf - go II = Re L:=l AjLj(j - go) < L:=l Aj . Ilf - go II = Ilf - go II,

which is false. Consequently (1) ---+ (2). Further, (2) ---+ (4) ---+ (3) is obvious.
Finally (3) ---+ (0) follows by taking L = L:=l iLjLj . Q.E.D.

THEOREM 16. Let E be a normed linear space, G a subset of E, let
f E E\adh G and go E G. Let Mc[go , G] be a nonvoid finite dimensional linear
space in C[go, C] with dim Mc[go, G] = d. If the Local Kolmogoroff condi
tion on G versus Mc[go , G] is sufficient, then go E £G(f) if and only if the
equivalent conditions of Lemma 15 hold.

COROLLARY 17. Let E be a normed linear space, G a subset of E, let
fE E\adh G and go E G. Let £[a] be a nonvoid linear space for Va E P. Let
£[ao] be afinite dimensional linear space:

span{lk I k = 1 ... d[ao]} = £[aoJ.

(a) If go E £G(f) then there exist linear functionals L l , ••• , Lh E (f(BE*),
where 1 ~ h ~ d[ao] + 1 if E is real, 1 ~ h ~ 2d [ao] + I if E is complex,
and there exist numbers AI,.'" Ah , iLl"'" iLh such that the following equivalent
conditions (1)-(4) are satisfied:

(l) AI,·'·' Ah are positive and satisfy (19), (21), and

h

L AjLj(lk) = 0;
j=l

k = 1,... , d[aol. (27)

(2) AI,.'.' Ah are positive and satisfy (19), (22) and (27).

(3) iLl'.'.' iLh are nonzero, and satisfy (23), (25) and

h

L iLjL;(lk) = 0;
j=l

k = 1,... , d[aol. (28)

(4) iLl"." iLh are nonzero and satisfy (23), (26) and (28).

(b) If, in addition, the Local Kolmogoroff condition on G versus Mc[go , Gl
is sufficient, then go E £G(f) ifand only if the preceding conditions (1)-(4) hold.

(5b) Geometrical Interpretation

Based on Theorem 12, a geometrical interpretation of Lemma 15,
Theorem 16 and Corollary 17 can be obtained.
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THEOREM 18. Let E be a normed linear space, G a subset of E, let
f E E\adh G and go E G. Let Me[go , G] be a nonvoid finite dimensional linear
space in C[go , G] with d = dim Me[go , G].

(a) Ifgo E QG(f), then: (i) there exists a hyperplane H which is a convex
combination of h extremal hyperplanes (1 ~ It ~ d + I or 1 ~ h ~ 2d + 1
according to whether E is real or complex) each supporting the ball
B(j, Ilf - go II) at go; H passes through (Me[go, GDg .o

(b) If, in addition, the Local Kolmogoroff condition on G versus
M e[go , G] is sufficient, then go E QG(f) if and only if the preceding condition
(i) holds.

6. DUALITY RELATIONS

(6a) Basic duality relations pair up two extremal problems, the one in
a given space, the other in the corresponding dual space. The following
theorem links such dual problems.

THEOREM 19. Let E be anormed linear space, G a subset ofE,letfE E\adhG
andgoE G.

(a) If(i) go E QG(f),

(ii) M is a nonvoid linear subspace in E (M not necessarily closed)
such that 0 E QMlf - go), then

Ilf - go 11M" = Ilf - go II·
(b) If(i) the Local Kolmogoroff condition on G is sufficient,

(ii)

then go E QG(f)·

Proof (a) MO C E* implies

Ilf - go II~o ~ Ilf - go II·

By Lemma 7(a) there exists a linear functional L E Wlf - g () MO.
o

Moreover:

Ilf - go liMo = sup I L'(! - go)I ~ I L(f - go)I = II! - go II
L'EMOnBE*

(b) Ilf - go II = sup I L'(f - go) I ~ II! - go - k II,
L'Ecor.o•G]nBE*

Vk E C[go , G].
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Consequently we have 0 E £c[go.Gl (f - go). By Lemma 7(b) and the assump
tion (i). on G, this is equivalent with go E £G(f). Q.E.D.

THEOREM 20. Let E be a normed linear space and G a subset of E, let
fE E\adh G and go E G. Let Mc[go, G] be any nonvoid linear subspace in
e[go, G].

(a) If go E £G(f), then

(29)

(b) If the Local Kolmogoroff condition on G versus Mc[go, G] is
sufficient, then go E £G(f) ifand only if (29) holds.

Proof The proof is similar to that of Theorem 19, applying Theorem 8.
In Theorem 20 one can replace Mc[go, G] by £[ao]' In Fig. 9 the conclusion
(29) of Theorem 20 is illustrated. To state complete duality relations we
quote the following

THEOREM 21 [10, p. 21; Corollary 1, 2b]. Let E* be the conjugate space
of a normed linear space E, and let r be a a(E*, E)-closed linear subspace of
E*. Let L E E*\r and Yo E r. Then Yo E £r(L) ifand only if

II(L - y)lor II = II L - Yo II·

(6b) Relations

(la) go E £G(f) implies

inf Ilf - gil = max I L(f - go)l.
geG LeM"f"'IBE*
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(lb) If the Local Kolmogoroff condition on G versus Mc[go, G] is
sufficient, then go E SJG(f) is equivalent with

(2) Yo E SJr(L) is equivalent with

sup I(L - yo)(f)! = min II L - y II·
fEOTnBE yET

(6c) Geometrical Interpretation

The relation (30) can be formulated as:

(30)

(31)

which indicates that the distance fromfto the set G is given by the norm of
f - go on McO[go , G]. Similarly, relation (31) can be reformulated as:

peL, T) = II(L - YO)!oT II

and expresses equality between the distance from L to the set r and the norm
of the linear functional restricted to or.

7. CONCLUSION

Our main purpose was to present a unified approach to nonlinear approx
imation theory, extending some of Singer's results from the linear theory.

In general normed vector spaces, nonlinear approximation theory has
already been provided with extensions of the Kolmogoroff condition [given
by Brosowski in [3] and repeated here in Lemmas 1 and 2]. Based on these
results and on the Hahn-Banach extension theorem we obtained a general
characterization theorem (Theorem 8). If the functions are Gateaux (resp.
Frechet) differentiable we have a characterization theorem which holds if some
requirements concerning the subset GeE are fulfilled (Theorem 11). This
characterization theorem was further refined to obtain a more explicit
formulation (Theorem 16). Throughout this paper geometrical interpretations
were given for all characterization theorems. Finally, duality relations were
given. As in linear approximation theory, they pair up two extremal problems,
one in the normed space E, the other in the weak * dual.
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